Chemical Reactive Anchoring Lipids with Different Performance for Cell Surface Re-engineering Application

نویسندگان

  • Pratima Vabbilisetty
  • Mallorie Boron
  • Huan Nie
  • Evgeny Ozhegov
  • Xue-Long Sun
چکیده

Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell's functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine-poly(ethylene glycol)-dibenzocyclooctyne (DSPE-PEG2000-DBCO) and cholesterol-PEG-dibenzocyclooctyne (CHOL-PEG2000-DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.7 cells as a model cell. Briefly, RAW 264.7 cells were incubated with anchor lipids under various concentrations and at different incubation times. The successful incorporation of the chemical reactive anchor lipids was confirmed by biotinylation via copper-free click chemistry, followed by streptavidin-fluorescein isothiocyanate binding. In comparison, the cholesterol-based anchor lipid afforded a higher cell membrane incorporation efficiency with less internalization than the phospholipid-based anchor lipid. Low cytotoxicity of both anchor lipids upon incorporation into the RAW 264.7 cells was observed. Further, the cell membrane residence time of the cholesterol-based anchor lipid was evaluated with confocal microscopy. This study suggests the potential cell surface re-engineering applications of the chemical reactive anchor lipids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improvement in Fluorocarbon Chain Re-orientation by Reactive Dyes

There is an increasing demand for air-dry performance of fluorocarbon finished materials. Thus, dyeing with different types of reactive, mono, bi, and multi-functional, dyes was evaluated as a novel treatment to create correct surface interface to maintain fluorocarbon performance without ironing or tumble drying. The effects of pre-treatment on fluorocarbon finishing of cotton fabric, a cellul...

متن کامل

Application of response surface methodology to optimize the ultraviolet/hydrogen peroxide process for the removal of Reactive Red 195 dye from aqueous solution

Background and Objective: The most used dyes in textile industries are Azo Group dyes. Azo dyes have complex aromatic compounds, low chemical and biodegradable stability. Due to these properties, treatment of this type of wastewater by conventional methods will not meet environmental standards. The advanced oxidation process has been widely used to treat organic matter from wastewater. In this ...

متن کامل

Liposome surface functionalization based on different anchoring lipids via Staudinger ligation.

Liposome surface functionalization facilitates numerous potential applications of liposomes, such as enhanced stability, bioactive liposome conjugates, and targeted drug, gene and image agent delivery. Anchoring lipids are needed for grafting ligands of interest and play important roles in ligand grafting density, liposome stability, and liposome chemical and physical characteristics as well. I...

متن کامل

سمت‌گیری مولکول‌های بلور مایع نماتیک در وضعیت دو بعدی و اثر چنگ زدگی‌های متناهی و نامتناهی

In this paper, the director distribution is calculated for a nematic liquid crystal, in the cell with different surface anchoring conditions and external fields. The effects of finite and infinite surface anchoring on molecular orientations for one dimensional geometry are discussed. In these situations, the planar alignment is considered. Then, in a two dimensional geometry the planar and homo...

متن کامل

Application of Salt Additives and Response Surface Methodology for Optimization of PVDF Hollow Fiber Membrane in DCMD and AGMD Processes

In this study, the influence of the salts as an additive on the performance of the membrane was investigated and an extensive work was performed to optimize PVDF hollow fiber membranes through a response surface methodology (RSM). The prepared membranes were characterized by SEM, contact angle and LEP measurement. Then, the RSM was used for the optimization of surface pore size, porosity and hy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2018